Публикации
  • Anisimov, M. N., Korshunova, A. V., Popov, V. V., & Gudimchuk, N. B. Microtubule rescue control by drugs and MAPs examined with in vitro pedestal assay. Eur. J. Cell Biol. (2023). DOI
  • Gudimchuk, N.B., Alexandrova, V.V. Measuring and modeling forces generated by microtubules. Biophys Rev (2023). DOI
  • Alexandrova V.V., Anisimov M.N., Zaitsev A.V., Mustyatsa V.V., Popov V.V., Ataullakhanov F.I., Gudimchuk N.B. A theory of tip structure-dependent microtubule catastrophes and damage-induced microtubule rescues. Proc. Natl. Acad. Sci. U. S. A. (2022). DOI
  • Vartanova, A. E., Plodukhin, A. Y., Ratmanova, N. K., Andreev, I. A., Anisimov, M. N., Gudimchuk, N. B., ... & Alabugin, I. V. Expanding Stereoelectronic Limits of endo-tet Cyclizations: Synthesis of Benz [b] azepines from Donor-Acceptor Cyclopropanes. Journal of the American Chemical Society. (2021). DOI
  • Gudimchuk, N.B., McIntosh, J.R. Regulation of microtubule dynamics, mechanics and function through the growing tip. Nat Rev Mol Cell Biol. (2021). DOI
  • Chen, J., Kholina, E., Szyk, A., Fedorov, V. A., Kovalenko, I., Gudimchuk, N., & Roll-Mecak, A. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Developmental Cell (2021). DOI
  • Ulyanov, E. V., Vinogradov, D. S., McIntosh, J. R. and Gudimchuk, N. B. Brownian dynamics simulation of protofilament relaxation during rapid freezing. Plos one, 16(2), e0247022, (2021). DOI
  • Alexandrova, V. V., Anisimov, M. N., Eltsov, I. A., Kilina, A. P., Lopanskaia, I. N., Makarova, L. O., Vovchenko, M. A. and Gudimchuk, N. B. Avoiding common problems with statistical analysis of biological experiments using a simple nested data simulator. SBPReports; 1 (1), 12-19 (2021). DOI
  • Gudimchuk, N. B., Ulyanov, E. V., O'Toole, E., Page, C. L., Vinogradov, D. S., Morgan, G., Gabriella, L., Moore, J. K., Szczesna, E., Roll-Mecak, A., Ataullakhanov, F. I., and McIntosh, R. J. Mechanisms of microtubule dynamics and force generation examined with computational modeling and electron cryotomography. Nature communications 11, 1 (2020), 3765. DOI
  • Ustinov, N. B., Korshunova, A. V., and Gudimchuk, N. B. Protein complex ndc80: Properties, functions, and possible role in pathophysiology of cell division. Biochemistry (Moscow) 85, 4 (2020), 448–462. DOI

  • Anisimov, M.N., and Gudimchuk N.B. Zoo of microtubule dynamics inhibitors. Priroda, 8 (2020), 3–12. DOI (In Russian)
  • Mustyatsa, V. V., Kostarev, A. V., Tvorogova, A. V., Ataullakhanov, F. I., Gudimchuk, N. B., and Vorobjev, I. A. Fine structure and dynamics of EB3 binding zones on microtubules in fibroblast cells. Molecular Biology of the Cell 30, 17 (2019), 2105–2114. DOI
  • Fedorov, V. A., Orekhov, P. S., Kholina, E. G., Zhmurov, A. A., Ataullakhanov, F. I., Kovalenko, I. B., and Gudimchuk, N. B. Mechanical properties of tubulin intra- and inter-dimer interfaces and their implications for microtubule dynamic instability. PLoS Computational Biology 15, 8 (2019), e1007327. DOI
  • Orekhov, P. S., Kirillov, I. V., Fedorov, V. A., Kovalenko, I. B., Gudimchuk, N. B., and Zhmurov, A. A. Parametrization of the elastic network model using high-throughput parallel molecular dynamics simulations. Supercomputing Frontiers and Innovations 6, 1 (2019), 19–22. DOI
  • Gudimchuk, N., and Roll-Mecak, A. Watching microtubules grow one tubulin at a time. Proceedings of the National Academy of Sciences of the United States of America 116, 15 (2019), 7163–7165. DOI
  • Korshunova, A.V., Lopanskaia, I.N. & Gudimchuk, N.B. Modern Approaches to Analysis of Protein–Ligand Interactions. Biophysics 64, 495–509 (2019). DOI
  • McIntosh, R. J., O'Toole, E., Morgan, G., Austin, J., Ulyanov, E., Ataullakhanov, F., and Gudimchuk, N. Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. Journal of Cell Biology (2018), jcb.201802138. DOI
  • Fedorov, V. A., Kholina, E. G., Kovalenko, I. B., and Gudimchuk, N. B. Performance analysis of different computational architectures: molecular dynamics in application to protein assemblies, illustrated by microtubule and electron transfer proteins. Supercomputing Frontiers and Innovations 5, 4 (2018). DOI
  • Gudimchuk, N., Tarasovetc, E. V., Mustyatsa, V., Drobyshev, A. L., Vitre, B., Cleveland, D. W., Ataullakhanov, F. I., and Grishchuk, E. L. Probing mitotic CENP-E kinesin with the tethered cargo motion assay and laser tweezers. Biophysical Journal 114, 11 (2018), 2640–2652. DOI
  • Mustyatsa, V. V., Boyakhchyan, A. V., Ataullakhanov, F. I., and Gudimchuk, N. B. EB-family proteins: Functions and microtubule interaction mechanisms. Biochemistry (Moscow) 82, 7 (2017), 791–802. DOI
  • Zakharov, P.N., Arzhanik, V.K., Ulyanov, E.V., Gudimchuk, N.B. and Ataullakhanov, F.I. Microtubules: dynamically unstable stochastic phase-switching polymers. Phys.-Usp. 59 773 (2016), 853–868. DOI
  • Rumyanstev, Y.A., Zakharov, P.N., Abrashitova, N.A., Shmatok, A.V., Ryzhikh, V.O., Gudimchuk, N.B., Ataullakhanov, F.I. PGA HPC Implementation of Microtubule Brownian Dynamics Simulations. Proceedings of ISP RAS. (2016) 28(3):241-266. DOI (In Russian)
  • Zakharov, P., Gudimchuk, N., Voevodin, V., Tikhonravov, A., I, A. F., and L, G. E. Molecular and mechanical causes of microtubule catastrophe and aging. Biophysical Journal 109, 12 (2015), 2574–2591. DOI
  • Gudimchuk N.B., Zakharov, P.N., Ulyanov, E.V., Ataullakhanov, F.I. Dynamic microtubules: from experiments to models. Priroda, 10 (2015), 3–10. (In Russian)
  • Vitre, B., Gudimchuk, N., Borda, R., Kim, Y., Heuser, J. E., Cleveland, D. W., and Grishchuk, E. L. Kinetochore-microtubule attachment throughout mitosis potentiated by the elongated stalk of the kinetochore kinesin CENP-E. Molecular Biology of the Cell 25, 15 (2014), 2272–2281. DOI
  • Gudimchuk, N., Vitre, B., Kim, Y., Kiyatkin, A., Cleveland, D. W., Ataullakhanov, F. I., and Grishchuk, E. L. Kinetochore kinesin CENP-E is a processive bi-directional tracker of dynamic microtubule tips. Nature Cell Biology 15, 9 (2013), 1079–1088. DOI
  • Volkov, V. A., Zaytsev, A. V., Gudimchuk, N., Grissom, P. M., Gintsburg, A. L., Ataullakhanov, F. I., McIntosh, J. R., and Grishchuk, E. L. Long tethers provide high-force coupling of the dam1 ring to shortening microtubules. Proceedings of the National Academy of Sciences of the United States of America 110, 19 (2013), 7708–7713. DOI
  • Grishchuk, E. L., Efremov, A. K., Volkov, V. A., Spiridonov, I. S., Gudimchuk, N., Westermann, S., Drubin, D., Barnes, G., McIntosh, J. R., and Ataullakhanov, F. I. The Dam1 ring binds microtubules strongly enough to be a processive as well as energy-efficient coupler for chromosome motion. Proceedings of the National Academy of Sciences of the United States of America 105, 40 (2008), 15423–15428. DOI